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1. Consider the following initial-boundary value problem for the heat equation:
∂u
∂t
(x, t)− ∂2u

∂x2
(x, t) = 0 for x ∈ (0, 1), t > 0,

u(x, 0) = sin2(2πx),

u(0, t) = u(1, t) = 0.

Find the solution u expressed as a trigonometric series.

2. Consider the following initial-boundary value problem for the Klein�Gordon equation:
∂2u
∂t2

(x, t)− ∂2u
∂x2

(x, t)− u(t, x) = 0 for x ∈ (0, 1), t > 0,

u(x, 0) = x(1− x), ∂u
∂t
(x, 0) = 0,

u(0, t) = u(1, t) = 0.

Find the solution u expressed as a trigonometric series.

3. Consider the following initial-boundary value problem for the Schrödinger equation:
i∂u
∂t
(x, t) + ∂2u

∂x2
(x, t) = 0 for x ∈ (0, 1), t > 0,

u(x, 0) = sin2(πx),

u(0, t) = u(1, t) = 0.

Find the solution u expressed as a trigonometric series.

4. Let ψ be the solution to the following initial value problem for the biharmonic heat equation
on the whole line: {

∂ψ
∂t
(x, t) + ∂4ψ

∂x4
(x, t) = 0 for x ∈ R, t > 0,

ψ(x, 0) = ψ0(x).

Show that the solution is given by the formula

ψ(x, t) =
1√
2π

1

t
1
4

� +∞

−∞
G

(
x− y

t
1
4

)
ψ0(y) dy,

where G : R→ R is the function for which its Fourier transform is given by

Ĝ(a) = e−a
4

.

(note that, a priori, the inverse Fourier transform of the above expression should be a function
G : R→ C; show that G is indeed real valued, i.e. that G(x) = G(x) for any x ∈ R.)
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5. Let us consider the following semi-in�nite initial-boundary value problem for the heat equation:
∂u
∂t
(x, t)− ∂2u

∂x2
(x, t) = f(x) for x ∈ (0,+∞), t > 0,

u(x, 0) = 0,

u(0, t) = 0,

where

f(x) = xe−
x2

2 .

By extending u(x, t) and f(x) as odd functions of x ∈ R, solve the above problem by applying
the Fourier transform in the x-variable. Verify that the solution u(x, t) that you get in this way
is indeed odd and that u(x, t) satis�es the required boundary condition at x = 0 (this should
be automatically true for continuous odd functions).

6 (extra). Let V : R→ R be a smooth function (which we will call the potential) and let u : R×[0,+∞) →
C be a solution to the Schrödinger equation:

i
∂u

∂t
(x, t) +

∂2u

∂x2
(x, t)− V (x)u(x, t) = 0.

We will assume that, at any time t ⩾ 0, we have that u(x, t), ∂u
∂x
(x, t) → 0 as x→ ±∞.

(a) In the special case when V (x) = 0, �nd an expression for u if the initial data at t = 0 is
given by

u(x, 0) = eiλx−
x2

2 .

(b) In the general case (i.e. when V is not necessarily zero), show that the quantity

� +∞

−∞
|u(x, t)|2 dx

is constant in time (this motivates the interpretation of |u(x, t)|2 as the probability density
of the particle described by u). Hint: Use the fact that |u|2 = Re{u · ū} and show �rst

that ∂t|u|2 = 2Re{∂tu · ū}. Then, use the equation to reexpress ∂tu and integrate by parts

in x if necessary. Note that ∂(Re(f)) = Re(∂f) and ∂f̄ = ∂f .

(c) Show that the total energy of u, de�ned by

E[u](t) =

� +∞

−∞

(∣∣∣∣∂u∂x(x, t)
∣∣∣∣2 + V (x) |u(x, t)|2

)
dx

is also constant in time. Hint: Di�erentiate the above expression in t like before, integrate

by parts with respect to the ∂x-derivatives and use the equation to substitute for the ∂2u
∂x2

term.
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Solutions

1. We are given the initial-boundary value problem for the heat equation:
∂u
∂t
(x, t)− ∂2u

∂x2
(x, t) = 0, x ∈ (0, 1), t > 0,

u(x, 0) = sin2(2πx), x ∈ (0, 1),

u(0, t) = u(1, t) = 0, t > 0.

In view of the Dirchlet boundary conditions, we look for a solution of the form:

u(x, t) =
∞∑
n=1

bn(t) sin(nπx)

(since, as we usually do in such problems, we extend the solution as an odd, 2-periodic function
of x ∈ R). We substitute this form into the heat equation:

∂u

∂t
=

∞∑
n=1

b′n(t) sin(nπx),
∂2u

∂x2
=

∞∑
n=1

−n2π2bn(t) sin(nπx).

Hence the PDE becomes:

∞∑
n=1

b′n(t) sin(nπx) =
∞∑
n=1

−n2π2bn(t) sin(nπx).

By orthogonality of the sine functions, we get for all n:

b′n(t) = −n2π2bn(t) ⇒ bn(t) = bn(0)e
−n2π2t,

where bn(0) is determined by the initial condition. We use the initial condition:

u(x, 0) = sin2(2πx).

We want to expand sin2(2πx) in the sine basis:

sin2(2πx) =
∞∑
n=1

bn(0) sin(nπx).

The Fourier sine coe�cients are given by:

bn(0) = 2

� 1

0

sin2(2πx) sin(nπx) dx.

We now simplify the integrand using the trigonometric identity:

sin2(2πx) =
1− cos(4πx)

2
.
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Thus,

bn(0) = 2

� 1

0

(
1− cos(4πx)

2

)
sin(nπx) dx =

� 1

0

(1− cos(4πx)) sin(nπx) dx.

Now we split the integral:

bn(0) =

� 1

0

sin(nπx) dx−
� 1

0

cos(4πx) sin(nπx) dx.

� The �rst integral is: � 1

0

sin(nπx) dx =

{
0, if n is even,
2
nπ
, if n is odd.

� The second integral is:
� 1

0

cos(4πx) sin(nπx) dx =

� 1

0

e4πxi + e−4πxi

2
· e

nπxi − e−nπxi

2i
dx

=
1

4i

� 1

0

(
e(4+n)πxi − e(4−n)πxi + e(−4+n)πxi − e(−4−n)πxi) dx

=


1
4i

(
e(4+n)πi−1
(4+n)πi

− e(4−n)πi−1
(4−n)πi + e(−4+n)πi−1

(−4+n)πi
− e(−4−n)πi−1

(−4−n)πi

)
, if n ̸= 4,

1
4i

(
e8πi−1
8πi

− 1 + 1− e−8πi−1
−8πi

)
, if n = 4,

=

{
(1− (−1)n) n

π(n2−16)
, if n ̸= 4,

0, if n = 4.

Thus,

bn(0) =

{
2
π

(
1
n
− n

n2−16

)
= − 32

πn(n2−16)
, if n is odd,

0, if n is even.

Therefore, the solution to the heat equation is:

u(x, t) =
∞∑
n=1
n odd

− 32

πn(n2 − 16)
e−n

2π2t sin(nπx).

2. We are given the following initial-boundary value problem:

∂2u

∂t2
(x, t)− ∂2u

∂x2
(x, t)− u(x, t) = 0, x ∈ (0, 1), t > 0,

u(x, 0) = x(1− x),
∂u

∂t
(x, 0) = 0,

u(0, t) = u(1, t) = 0.
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In view of the Dirichlet boundary conditions, as before, we look for a solution in the form of a
Fourier sine series:

u(x, t) =
∞∑
n=1

bn(t) sin(nπx).

This satis�es the boundary conditions u(0, t) = u(1, t) = 0 automatically.

We compute:

∂2u

∂t2
=

∞∑
n=1

b′′n(t) sin(nπx),
∂2u

∂x2
= −

∞∑
n=1

n2π2bn(t) sin(nπx).

Substituting into the PDE:

∞∑
n=1

(
b′′n(t) + n2π2bn(t)− bn(t)

)
sin(nπx) = 0.

By orthogonality of sin(nπx), each coe�cient must vanish:

b′′n(t) + (n2π2 + 1) bn(t) = 0.

This is a second-order linear ODE with constant coe�cients:

b′′n(t) + ω2
nbn(t) = 0, where ωn =

√
n2π2 + 1.

General solution:
bn(t) = An cos(ωnt) +Bn sin(ωnt).

We will determineAn andBn from the initial conditions. To this end, we �rst need to decompose
u(x, 0) into a sine series: We have that

u(x, 0) = x(1− x) =
+∞∑
n=1

cn sin(nπx),

where

cn = 2

� 1

0

x(1− x) sin(nπx) dx.

We simplify:

cn = 2

� 1

0

(x− x2) sin(nπx) dx = 2

(� 1

0

x sin(nπx) dx−
� 1

0

x2 sin(nπx) dx

)
.

Use known integrals:
� 1

0

x sin(nπx) dx =
(−1)n+1

nπ
,

� 1

0

x2 sin(nπx) dx =
(−1)n+1

nπ
+

2 ((−1)n − 1)

(nπ)3
.
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Thus:

cn = 2

(
(−1)n+1

nπ
−
(
(−1)n+1

nπ
+

2 ((−1)n − 1)

(nπ)3

))
=

4 (1− (−1)n)

n3π3
.

Going back to our initial value problem, since u(x, 0) = x(1 − x) and ∂u
∂t
(x, 0) = 0, we must

have, for any n:
bn(0) = cn and b′n(0) = 0.

Since bn(t) = An cos(ωnt) +Bn sin(ωnt), substituting in the above we get

An = cn and Bn = 0.

So:
bn(t) = cn cos(ωnt).

Therefore, the solution is:

u(x, t) =
∞∑
n=1

4 (1− (−1)n)

n3π3
cos
(√

n2π2 + 1 t
)
sin(nπx).

3. Consider the initial-boundary value problem:
i
∂u

∂t
(x, t) +

∂2u

∂x2
(x, t) = 0, x ∈ (0, 1), t > 0,

u(x, 0) = sin2(πx),

u(0, t) = u(1, t) = 0.

In view of the Dirichlet boundary conditions, we expand (as before):

u(x, t) =
∞∑
n=1

bn(t) sin(nπx).

Substitute into the original problem:

i

∞∑
n=1

b′n(t) sin(nπx) +
∞∑
n=1

(−n2π2)bn(t) sin(nπx) = 0.

This yields for each n:

i b′n(t)− n2π2bn(t) = 0 ⇒ b′n(t) = −in2π2bn(t).

Therefore,
bn(t) = bn(0)e

−in2π2t.
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We expand the initial condition in a Fourier sine series:

u(x, 0) = sin2(πx) =
∞∑
n=1

cn sin(nπx).

Use the identity:

sin2(πx) =
1− cos(2πx)

2
,

so:

cn = 2

� 1

0

sin2(πx) sin(nπx) dx = 2

� 1

0

(
1− cos(2πx)

2

)
sin(nπx) dx.

Simplify:

cn =

� 1

0

(1− cos(2πx)) sin(nπx) dx.

This is a similar computation as in the �rst exercise. Note:

�

� 1

0

sin(nπx) dx =

0, if n even,
2

nπ
, if n odd.

� For the second term:� 1

0

cos(2πx) sin(nπx) dx =

� 1

0

e2πxi + e−2πxi

2
· e

nπxi − e−nπxi

2i
dx

=
1

4i

� 1

0

(
e(2+n)πxi − e(2−n)πxi + e(−2+n)πxi − e(−2−n)πxi) dx

=


1
4i

(
e(2+n)πi−1
(2+n)πi

− e(2−n)πi−1
(2−n)πi + e(−2+n)πi−1

(−2+n)πi
− e(−2−n)πi−1

(−2−n)πi

)
, if n ̸= 2,

1
4i

(
e4πi−1
4πi

− 1 + 1− e−4πi−1
−4πi

)
, if n = 2,

=

{
(1− (−1)n) n

π(n2−4)
, if n ̸= 2,

0, if n = 2.

Thus:

cn =


2

nπ
− 2n

π(n2 − 4)
= − 8

π

1

n(n2 − 4)
, if n is odd,

0, if n is even.

Since u(x, 0) = sin2(πx), we must have bn(0) = cn for all n, therefore, the �nal solution:

u(x, t) =
∞∑
n=1
n odd

− 8

π

1

n(n2 − 4)
e−in

2π2t sin(nπx).
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4. Consider the initial value problem for the biharmonic heat equation on the real line:
∂ψ

∂t
(x, t) +

∂4ψ

∂x4
(x, t) = 0, x ∈ R, t > 0,

ψ(x, 0) = ψ0(x).

De�ne the Fourier transform in x as:

ψ̂(a, t) =
1√
2π

� ∞

−∞
ψ(x, t)e−iax dx.

Taking the Fourier transform of the original problem:

∂ψ̂

∂t
(a, t) + a4ψ̂(a, t) = 0.

This is a linear ODE for each a:

dψ̂

dt
= −a4ψ̂ ⇒ ψ̂(a, t) = ψ̂(a, 0)e−a

4t.

In view of our initial condition ψ(x, 0) = ψ0(x), we must have (after taking the Fourier transform
of the initial data):

ψ̂(a, 0) = ψ̂0(a).

Therefore
ψ̂(a, t) = ψ̂0(a)e

−a4t.

We would like to invert the Fourier transform above. Since the function G in the statement
satis�es

F [G](a) = e−a
4

,

using the rescaling property of the Fourier transform we can calculate

e−a
4t = e−(t

1
4 a)4 = F [G(x)](t

1
4a) =

1

t
1
4

F
[
G

(
x

t
1
4

)]
(a).

Therefore, the previous expression becomes

ψ̂(a, t) = F [ψ0](a) · F
[
1

t
1
4

G

(
x

t
1
4

)]
.

Using the property regarding the Fourier transform of convolutions, namely that F [h ∗ g] =√
2πF [h] · F [g], we therefore compute that

ψ(x, t) =
1√
2π

� +∞

−∞

1

t
1
4

G

(
x− y

t
1
4

)
ψ0(y) dy.
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Finally it remains to show that the function G is real valued, namely that G(x) = G(x). We
are given:

Ĝ(a) = e−a
4

.

Taking the inverse Fourier transform:

G(x) =
1√
2π

� ∞

−∞
e−a

4

eiax da.

Take complex conjugate:

G(x) =
1√
2π

� ∞

−∞
e−a

4

e−iax da.

Making the change of variables s = −a, we compute:

1√
2π

� −∞

+∞
e−s

4

eisx d(−s) = 1√
2π

� +∞

−∞
e−s

4

eisx ds = G(x)

So:
G(x) = G(x).

Thus, G(x) ∈ R for all x ∈ R.

5. Consider the initial-boundary value problem:
∂u

∂t
(x, t)− ∂2u

∂x2
(x, t) = f(x), x ∈ (0,∞), t > 0,

u(x, 0) = 0,

u(0, t) = 0,

where f(x) = xe−x
2/2.

Extend u and f on the whole real line x ∈ R as odd functions:

f(x) = −f(−x) and u(x, t) = −u(−x, t) for x < 0.

Note that f(x) is still given by the formula

f(x) = xe−
x2

2

for all x ∈ R.

Then u(x, t) satis�es the heat equation on R:
∂u

∂t
(x, t)− ∂2u

∂x2
(x, t) = f(x), x ∈ R, t > 0,

u(x, 0) = 0.
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Apply the Fourier transform in x. Let:

û(a, t) =
1√
2π

� +∞

−∞
e−iaxu(x, t) dx

and similarly for f̂(a).

Then the PDE becomes an ODE in time:

∂û

∂t
(a, t) + a2û(a, t) = f̂(a), û(a, 0) = 0.

There are many ways to solve the above; one would be to use the Laplace transform, another
is to use the integrating factor method: Multiply both sides by the integrating factor ea

2t:

ea
2tdû

dt
+ a2ea

2tû = f̂(a)ea
2t.

The left-hand side is the derivative of the product:

d

dt

(
ea

2tû(a, t)
)
= f̂(a)ea

2t.

Integrate both sides from 0 to t:

ea
2tû(a, t)− û(a, 0) = f̂(a)

� t

0

ea
2sds.

Using the initial condition u(x, 0) = 0 ⇒ û(a, 0) = 0, we solve for û(a, t):

û(a, t) = e−a
2tf̂(a)

� t

0

ea
2sds.

We now simplify the integral:

� t

0

ea
2sds =

1

a2

(
ea

2t − 1
)
.

Substitute back:

û(a, t) =
f̂(a)

a2

(
1− e−a

2t
)
.

Since f(x) = xe−x
2/2 = d

dx

(
e−

x2

2

)
and F [e−

x2

2 ](a) = e−
a2

2 , we compute:

F
[
xe−x

2/2
]
(a) = F

[
d

dx
(e−x

2/2)

]
(a) = iae−a

2/2.
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Therefore:
f̂(a) = iae−a

2/2.

Substitute into the solution:

û(a, t) = i · e
−a2/2

a

(
1− e−a

2t
)

or, after multiplying both sides with ia:

iaû(a, t) = −e−a2/2 + e−a
2( 1

2
+t).

Using the facts that

� F−1[iaû(a, t)] = ∂u
∂x
,

� F−1[e−a
2/2](x) = e−x

2/2 and

� F−1[e−a
2( 1

2
+t)](x) = F−1[e−

(a
√
1+2t)2

2 ](x) = 1√
1+2t

e
(x/

√
1+2t)2

2 = 1√
1+2t

e−
x2

2+4t ,

we deduce that
∂u

∂x
(x, t) = −e−x2/2 + 1√

1 + 2t
e−

x2

2+4t .

Since u(0, t) = 0 (since u is odd in x), integrating the above in x we infer:

u(x, t) = −
� x

0

e−y
2/2 dy +

1√
1 + 2t

� x

0

e−
y2

2+4t dy.

6. Let V : R → R be a smooth potential and let u(x, t) : R × [0,∞) → C solve the Schrödinger
equation:

i
∂u

∂t
(x, t) +

∂2u

∂x2
(x, t)− V (x)u(x, t) = 0,

with the decay condition:

u(x, t),
∂u

∂x
(x, t) → 0 as x→ ±∞ for all t ⩾ 0.

(a) We solve the free Schrödinger equation using the Fourier transform method.

Let the initial condition be:

u(x, 0) = eiλx−
x2

2 ,

which is a Gaussian modulated by a plane wave of frequency λ.

We compute its Fourier transform (which is well de�ned since |eiλx−x2

2 | = e−
x2

2 is absolutely
integrable):

û(a, 0) =
1√
2π

� ∞

−∞
u(x, 0)e−iaxdx =

1√
2π

� ∞

−∞
eiλx−

x2

2 e−iaxdx.
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Combine exponents:

û(a, 0) =
1√
2π

� ∞

−∞
e−

x2

2
+i(λ−a)xdx.

This is a standard Gaussian integral of the form:

1√
2π

� ∞

−∞
e−

x2

2
+ibxdx = e−b

2/2, for any b ∈ R.

Here, b = λ− a, so:
û(a, 0) = e−(a−λ)2/2.

Now, we consider the evolution under the free Schrödinger equation:

i
∂u

∂t
+
∂2u

∂x2
= 0.

Taking the Fourier transform of both sides in x, we get:

i
∂û

∂t
(a, t) = a2û(a, t) ⇒ ∂û

∂t
(a, t) = −ia2û(a, t),

which is an ordinary di�erential equation in time for each �xed spatial frequency a.

Solving this ODE gives:
û(a, t) = û(a, 0)e−ia

2t.

Substituting the expression for û(a, 0) that we computed above:

û(a, t) = e−(a−λ)2/2e−ia
2t.

The solution u is obtained by inverting the Fourier transform:

u(x, t) =
1√
2π

� ∞

−∞
û(a, t)eiaxda =

1√
2π

� ∞

−∞
e−(a−λ)2/2e−ia

2teiaxda =
e−

λ2

2

√
2π

� ∞

−∞
e(λ+ix)a−( 1

2
+it)a2da.

Using the linear change of variables a→ z(a),

z =
√
1 + 2ita− λ+ ix√

1 + 2it

(so that da = dz√
1+2it

), the above integral becomes

u(x, t) =
e−

λ2

2

√
2π

�
γ

e
λ2

2(1+2it)
+ iλx

1+2it
− x2

2(1+2it)
− 1

2
z2 dz√

1 + 2it

=
e−

−2itλ2

2(1+2it)
+ iλx

1+2it
− x2

2(1+2it)√
2π(1 + 2it)

�
γ

e−
1
2
z2 dz,
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where the curve γ is the straight line

γ(a) =
√
1 + 2ita− λ+ ix√

1 + 2it
, a ∈ R.

Using Cauchy's theorem to shift the integral from γ to R (using the fact that e−
z2

2 decays

as Re(z) → ±∞), together with the fact that
�
R
e−

z2

2 dz =
√
2π, we �nally obtain:

u(x, t) =
e−

−itλ2+iλx−x2

2
2(1+2it)

√
1 + 2it

.

(b) We want to show that the L2-norm of the solution is conserved over time:

d

dt

� ∞

−∞
|u(x, t)|2 dx = 0.

(this is the reason why |u(x, t)|2 can be physically interpreted as a probability density).

Since
|u(x, t)|2 = u(x, t)u(x, t),

We compute:
∂|u(x, t)|2

∂t
=
∂u

∂t
ū+ u

∂ū

∂t
= 2Re

(
∂u

∂t
ū

)
.

(since, Re(z) = 1
2
(z + z̄), so for any two complex numbers a, b: 2Re(a · b̄) = a · b̄+ ā · b).

Now, we use the Schrödinger equation to substitute for ∂tu:

∂u

∂t
= −i

(
−∂

2u

∂x2
+ V (x)u

)
.

Substituting this into the previous expression for ∂t|u|2, we get:

∂|u|2

∂t
= 2Re

(
−i
(
−∂

2u

∂x2
+ V u

)
ū

)
.

We now pull out the factor of −i, and recall that Re(−iz) = Im(z), so:

∂|u|2

∂t
= 2Im

(
∂2u

∂x2
ū− V |u|2

)
.

Note that V (x)|u|2 ∈ R (since V (x) ∈ R), so its imaginary part vanishes. Thus:

∂ρ

∂t
= 2Im

(
∂2u

∂x2
ū

)
.
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Integrating over all x ∈ R:

d

dt

� ∞

−∞
|u(x, t)|2dx = 2Im

� ∞

−∞

∂2u

∂x2
(x, t)u(x, t) dx.

We now integrate by parts. Since u(x, t) and ∂xu(x, t) decay to zero as x → ±∞, the
boundary terms vanish. Hence:

� ∞

−∞

∂2u

∂x2
ūdx = −

� ∞

−∞

∂u

∂x

∂ū

∂x
dx = −

� ∞

−∞

∣∣∣∣∂u∂x
∣∣∣∣2 dx.

This �nal integral is real, so its imaginary part is zero. Therefore:

d

dt

� ∞

−∞
|u(x, t)|2dx = 0.

� ∞

−∞
|u(x, t)|2dx = constant in time

This shows that the L2-norm of the wave function is conserved, which justi�es interpreting
|u(x, t)|2 as a probability density.

(c) We now show that the total energy of the system is conserved in time. De�ne the energy
functional:

E[u](t) =

� ∞

−∞

(∣∣∣∣∂u∂x
∣∣∣∣2 + V (x)|u(x, t)|2

)
dx

(physically, the �rst term corresponds to kinetic energy and the second to potential en-
ergy). To check whether E[u](t) is conserved, we di�erentiate with respect to time:

dE

dt
=

� ∞

−∞

(
∂

∂t

∣∣∣∣∂u∂x
∣∣∣∣2 + V (x)

∂

∂t
|u|2
)
dx

(note that we used the fact that V (x) is independent of t).

For convenience, let us use subscripts ut, ux etc for the partial derivatives ∂u
∂t
, ∂u
∂x
. Using

the fact that we computed ∂|u|2
∂t

before (and similarly for the derivative of |ux|2):

dE

dt
= 2Re

� ∞

−∞
(uxtux + V (x)utū) dx.

Integrating by parts in x for the term uxtūx (using the fact that ux goes to 0 as x→ ±∞),
we get

dE

dt
= 2Re

� ∞

−∞
(−utuxx + V (x)utū) dx.
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Next, recall from the Schrödinger equation:

∂u

∂t
= −i(−uxx + V u).

Substitute ut into the expression for dE
dt
:

dE

dt
=2Re

� ∞

−∞
(i(−uxx + V u)ūxx + V (x)(−i(−uxx + V u))ū) dx

=2Re

� ∞

−∞

(
−i|uxx|2 + iV uūxx + iV uxxū− iV |u|2

)
dx.

Notice that −i|uxx|2 and −iV |u|2 are purely imaginary (so their real part is 0), so

dE

dt
= 2Re

� ∞

−∞
(iV uūxx + iV uxxū) dx.

Using the fact that 2Re(z) = z + z̄, we have

2Re (iV uūxx + iV uxxū) = (iV uūxx + iV uxxū) + (−iV ūuxx − iV ūxxu) = 0,

so
dE

dt
= 0.
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