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1. Consider the following initial-boundary value problem for the heat equation:

%( 1) — ( ,t)=0 for x€(0,1),t>0,
u(zr,0) = sin?(27x),
u(0,t) = u(1,t) = 0.

Find the solution u expressed as a trigonometric series.

2. Consider the following initial-boundary value problem for the Klein—(Gordon equation:

u(r,t) — Le(z,t) —ult,x) =0 for x€(0,1),¢>0,
=z(1 -

u(z,0) z), G(z,0)=0,
w(0,t) = u(1,t) = 0.

Find the solution u expressed as a trigonometric series.

3. Consider the following initial-boundary value problem for the Schrédinger equation:

o)+ B30 =0 o 2€ (01,150,
u(x,0) = sin®(7z),

u(0,t) = u(1,t) = 0.

Find the solution u expressed as a trigonometric series.

4. Let 1 be the solution to the following initial value problem for the biharmonic heat equation
on the whole line:
{%f(x t)+8x4< t)=0 for ze€R,t>0,

U(x,0) = ().

Show that the solution is given by the formula

ww##%/jc:(‘“; ) vt

where GG : R — R is the function for which its Fourier transform is given by
A 4

G(a) =e*.

(note that, a priori, the inverse Fourier transform of the above expression should be a function
G : R — C; show that G is indeed real valued, i.e. that G(z) = G(x) for any = € R.)
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5.

6 (extra).

Let us consider the following semi-infinite initial-boundary value problem for the heat equation:

(g, t) — Lu(x,t) = f(z) for x € (0,+00),t>0,

where

22

flz)=xe 7.
By extending u(z,t) and f(z) as odd functions of x € R, solve the above problem by applying
the Fourier transform in the z-variable. Verify that the solution u(z,t) that you get in this way
is indeed odd and that u(z,t) satisfies the required boundary condition at = = 0 (this should
be automatically true for continuous odd functions).

Let V : R — R be a smooth function (which we will call the potential) and let u : Rx [0, +00) —
C be a solution to the Schrédinger equation:

Ou 0*u
za(x,t) + @(x,t) — V(x)u(z,t) = 0.

We will assume that, at any time ¢ > 0, we have that u(x,t), g—;(x, t) — 0 as x — +oo.

(a) In the special case when V(z) = 0, find an expression for u if the initial data at t = 0 is
given by

L2
u(z,0) = 7,

(b) In the general case (i.e. when V' is not necessarily zero), show that the quantity

+oo
/ lu(z,t)|? d

o0
is constant in time (this motivates the interpretation of |u(z,t)|? as the probability density
of the particle described by u). Hint: Use the fact that |u|?> = Re{u - u} and show first
that Oy|u|* = 2Re{Otu - u}. Then, use the equation to reezpress dyu and integrate by parts

in x if necessary. Note that O(Re(f)) = Re(0f) and Of = Of.
(c) Show that the total energy of u, defined by

Emw:[w<%mw

2

o0

+ V(z) |u(z, t)|2> dz

is also constant in time. Hint: Differentiate the above expression in t like before, integrate
by parts with respect to the 0,-derivatives and use the equation to substitute for the %
term.
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Solutions

1. We are given the initial-boundary value problem for the heat equation:

% (z,t) — L4(x,t) =0, x€(0,1), t>0,
u(z,0) = sin?(27x), z e (0,1),
u(0,t) = u(l,t) =0, t>0.

In view of the Dirchlet boundary conditions, we look for a solution of the form:

E b, (t) sin(nmrz)

(since, as we usually do in such problems, we extend the solution as an odd, 2-periodic function
of x € R). We substitute this form into the heat equation:

Z b, (t) sin(nmx) a—;; = Z —n?m?b,(t) sin(nmr).

n=1

Hence the PDE becomes:

o0

Z bl (t) sin(nmx) Z —n?1?b, (t) sin(nrx).

n=1

By orthogonality of the sine functions, we get for all n:

22t

V,(t) = —n*mb,(t) = bu(t) = b, (0)e ™™™,
where b,(0) is determined by the initial condition. We use the initial condition:
u(z,0) = sin’(27x).

We want to expand sin?(27z) in the sine basis:

sin? (2mz) E b, (0) sin(nmx)

The Fourier sine coefficients are given by:
1

b,(0) = 2/ sin?(27x) sin(nrx) dz.
0

We now simplify the integrand using the trigonometric identity:

1 — cos(4mx)

-2
! 2 —
sin”(2mx) 5
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Thus,

b (0) = 2 /0 1 <1_%S(4”)) sin(nrz) da — /0 (1 — cos(dme)) sin(nmz) d.

Now we split the integral:

b,(0) = /01 sin(nmzx) dx — /01 cos(4rz) sin(nmx) dx.

— The first integral is:

1 . .
0 f
/ sin(nrz) dr = { ) U RIS even,
0

2 if nis odd.
nm

— The second integral is:

1 ' 1 e47ra:i + e—47rm' e'mrmi o e—'mr:ci
cos(4rmx) sin(nmwz) dr = : , dx
0 0 2 2
1/t 4 . , :
S (6(4+n)77:m . e(4fn)7rm + e(f4+n)7r‘m i e(f4fn)7rzz) dr

4i J,
1 e(d+n)mi__q e(d—n)mi_1 e(—4+n)mi_1 e(—4—n)mi_q .
43 ( (4+n)mi ~ (4—n)wi + (—44+n)mi  ~ (—4—n)mi ’ if n # 4’

67871'7,'_1

1 (et ; _
47‘( i e >7 if n =4,

A=) HnAd
0, if n=4.

Thus,

2 (1 n N _ 32 o
™ ( n2—16) —  mn(n2-16)’ if nis Odd’

b,(0) = "
©) {O, if n is even.

Therefore, the solution to the heat equation is:

[e.9]

32 .
u(x,t) = E —me sin(nra).
n=1
n odd

2. We are given the following initial-boundary value problem:

4 2 2
gTZ(ZL’;t) - %(x,t) — U(Z‘,t) = O, T E (0’ 1)7 t > 07
u(z,0) =z(1 —z),
ou
E(x70) = 07

L u(0,1) = u(1,1) = 0.

N\
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In view of the Dirichlet boundary conditions, as before, we look for a solution in the form of a
Fourier sine series:
Z b, (t) sin(nmrz)

This satisfies the boundary conditions u(0,t) = u(1,¢) = 0 automatically.

We compute:
Ou _ i b (t) sin(nmx), Z n?7?b,(t) sin(nrx).
oz "
n=1
Substituting into the PDE:
Z by (t) + n’mb,(t) — by(t)) sin(nmz) = 0.
n=1
By orthogonality of sin(n7x), each coefficient must vanish:
VI(t) + (n*r? + 1) by(t) = 0.
This is a second-order linear ODE with constant coefficients:

V! (t) 4+ w?b,(t) =0, where w, = Vn2r2 + 1.

General solution:
by (t) = A, cos(wyt) + By sin(wyt).

We will determine A,, and B,, from the initial conditions. To this end, we first need to decompose
u(z,0) into a sine series: We have that

“+o00

u(z,0) =z(l —z) = Z Cp sin(nmz),

n=1
where

1
Cp = 2/ z(1 — x)sin(nmx) du.
0

We simplify:
1 1 1
Cp = 2/ (x — x2) sin(nrx) dr = 2 (/ xsin(nrz) dr — / 22 sin(nmz) dx) )
0 0 0

Use known integrals:

/01 xsin(nrx) dr = <_1)n+1, /01 22 sin(nrx) dz = (=" I 2((=1)"-1)

nm nm (nm)3
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Thus:

(=2 ((—1)"+1 - ((_1)n+1 2((—1)" — 1))) _ 4=

nm nw - (nm)3 n3m3

Going back to our initial value problem, since u(z,0) = z(1 — z) and %%(z,0) = 0, we must
have, for any n:
b,(0) =¢, and ¥, (0)=0.

Since b, (t) = A, cos(w,t) + By, sin(w,t), substituting in the above we get

A,=c¢, and B, =0.

So:
b, (t) = ¢, cos(wpt).

Therefore, the solution is:

u(z,t) = i 4= 0" cos <Wt> sin(nmzx).

3. Consider the initial-boundary value problem:

Ou 0*u
za(x,t) a2(x t)=0, z€(0,1), t>0,

u(z,0) = sin?(7x),
u(0,t) = u(l,t) = 0.

In view of the Dirichlet boundary conditions, we expand (as before):

E b, (t) sin(nrz)

Substitute into the original problem:

Zb ) sin(nwx) + Z —n?7?)b,(t) sin(nrz) = 0.

n=1
This yields for each n:

ib,(t) —n’mh,(t) =0 = b (t) = —in*7b,(t).

Therefore,
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We expand the initial condition in a Fourier sine series:
oo
u(z,0) = sin?(rz) = g Cpsin(nmr).
n=1

Use the identity:
1 — cos(2mx)
2 J

1 Ly 9
Cp = 2/ sin?(rz) sin(nrw) do = 2/ (M) sin(nrz) dx.
0 0

sin?(mz) =

SO.

Simplify:
1
Cp = / (1 — cos(27x)) sin(nmx) dz.
0
This is a similar computation as in the first exercise. Note:

0, if n even,

2 ifnodd,

nm
— For the second term:

1
—/ sin(nrz) dr =
0

1 . _ . . . .
e27racz +e 2wt enTLL _ oIl

1
/0005(27rx)sm(n7r:r)dx:/0 5 : % dx

1
= l (6(2+n)7rm' _ e@mm)mwi | (=24m)mai _ 6(—2—n)7ra:i) dx
4i /o
1 e(2tn)mi_q e(2—n)mi_q e(—2+n)mi_q e(—2-n)mi_q .
_ )4 < @+tn)mi— (2-n)mi T (=24n)mi (=2-m)mi ) , in#2
= 1 edmi_q e—4mi_q . .
4_i<47ri —1+1- —47ri)7 1f7’L—2,
(= (D) ey (A2
0, if n=2.
Thus: ) , . 1
I g—n =——————, ifnisodd,
¢, = nm  m(n*—4) mn(n?—4)
0, if n is even.

Since u(z,0) = sin®(7x), we must have b, (0) = ¢, for all n, therefore, the final solution:

8 1 ..
u(w,t) = Z _;71(712——4)6 "sin(nmx).
nn(led
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4. Consider the initial value problem for the biharmonic heat equation on the real line:

o oy
@+ S0 =0, TeR t>0,
(@, 0) = o(z).

Define the Fourier transform in x as:

N 1 e .
o) = <= / (e, e da.

Taking the Fourier transform of the original problem:

O

S () + a*i(a,t) = 0.

This is a linear ODE for each a:

dp

dt 1; = 7v[)(a’t) = 77/}((1, 0)6_

In view of our initial condition ¥(x, 0) = vo(x), we must have (after taking the Fourier transform
of the initial data):

W(a,0) = ty(a).
Therefore

~ ~

b(a,t) = Po(a)e ™.

We would like to invert the Fourier transform above. Since the function G in the statement
satisfies
4
FlGl(a) = e,

using the rescaling property of the Fourier transform we can calculate

t4

et — R _ Fla(a)|(tha) = 5 1r [G ( ! )} (a).

Therefore, the previous expression becomes

bla.t) = Fluol(a) - F Lic (ti)} |

Using the property regarding the Fourier transform of convolutions, namely that F[h x g] =
V21 F[h] - Flg], we therefore compute that

v ) = m/:"; (t )%()
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Finally it remains to show that the function G is real valued, namely that G(z) = G(x). We
are given:

Gla) = e,

Taking the inverse Fourier transform:

1 o 4,
G(z) = E/ e " e""da.

1 > 1,
G(z) = —/ e v e " da.
21 J -

Making the change of variables s = —a, we compute:

1 Bl 1 oo 4
o e e¥d(—s) = — e ®e¥ds=0G(x
\ 27 [Foo (=9) V2T /_oo (=)

Take complex conjugate:

So:

‘Thus, G(z) € Rforall x € [R.‘

5. Consider the initial-boundary value problem:

2
Oty = %ty = f(2), @€ (0,00), £ >0,
ot o0x2 e
u(x,0) =0, where f(x) = xe .
u(0,t) =0,

Extend u and f on the whole real line x € R as odd functions:
flz)=—f(—x) and wu(z,t)=—u(—z,t) for x<O.

Note that f(x) is still given by the formula

22
f(x) = e
for all x € R.
Then u(z,t) satisfies the heat equation on R:
Ou 0%u
E(I,t)—@(l’,t)—f(l’), reR, t>0,
u(z,0) = 0.
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Apply the Fourier transform in x. Let:

1 too
u(a,t) = \/—2_7T/ e " u(x,t) dr

o0

and similarly for f (a).
Then the PDE becomes an ODE in time:

ou

(@) + a*i(a,t) = f(a),  a(a,0) =0.

There are many ways to solve the above; one would be to use the Laplace transform, another
is to use the integrating factor method: Multiply both sides by the integrating factor et

2, dil

dt

+a2e”ta = f(a)e™".

The left-hand side is the derivative of the product:

% <e“2t@(a,t)) = f(a)e®™.

Integrate both sides from 0 to ¢:

2

t
e“"a(a,t) — a(a,0) = f(a)/ e ds.
0
Using the initial condition u(z,0) = 0 = u(a,0) = 0, we solve for u(a,t):
24 4 t 2
u(a,t) =€ tf(a)/ e *ds.
0

We now simplify the integral:

Substitute back:

. f(a) —a?t
u(a,t) = s <1 e )
Since f(z) = ze *"/? = 4 (e‘é) and ]-'[e‘é](a) = e‘é, we compute:
F [J:e_wQ/Q} (a) =F [dix( _m2/2)} (a) = iae*/?
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Therefore:
A 2
f(a) = iae™/2.

Substitute into the solution:

_a2/2
€ 2
ﬂa,t :Z (1_6_at>
(a,t) -
or, after multiplying both sides with ia:
jai(a, ) =~ 4 )

Using the facts that

— Fliat(a,t)] = &

=

- ]:*1[6*“2/2]@) = e /2 and

17 o—a2(L i (avIT20)? (¢//1F20)2 _ @
- F 1[6 (Q‘H)](;p) =F 1[@ 2 ](;p) = ﬁe 2 = 112156 244t |
we deduce that
aU 7‘%2/2 ]_ _ 12
—(x7 t) = —e —+ e 2+4t

ox V142t

Since u(0,t) = 0 (since u is odd in z), integrating the above in = we infer:

T 1 T 2
U(iL’, t) = — / €7y2/2 dy + m/ €_ﬁ dy
0 \% 0

6. Let V : R — R be a smooth potential and let u(z,t) : R x [0,00) — C solve the Schrodinger
equation:
0 0?
iy (@) 4 55 (@,0) = Viehue,t) = 0,

with the decay condition:

0
u(z,t), a—z(x,t) — 0 asx — doo forallt > 0.

(a) We solve the free Schrodinger equation using the Fourier transform method.

Let the initial condition be: ,
u(z,0) = 7

which is a Gaussian modulated by a plane wave of frequency A.

¥

- z2 < .
We compute its Fourier transform (which is well defined since |¢?**~2 | = e~ is absolutely

integrable):

]_ o0 . 1 oo .2 '
ft(a, 0) = \/_2_7(/ "LL(I, 0)€*wxdx — _27r/ 62)\177€7wxdx.
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Combine exponents:
—'72+i(/\—a)rdx'

i(a,0) = m/

This is a standard Gaussian integral of the form:

e 2
Q—bed.T:@ b*/2

vl

Here, b = X\ — a, so:
a(a,0) = e (N2,

Now, we consider the evolution under the free Schrédinger equation:

‘@4_@—0
“or Toz

Taking the Fourier transform of both sides in x, we get:

8u ot

e —(a,t) = a*u(a,t) = —(a,t) = —ia*i(a,t),

ot

, forany b € R.

which is an ordinary differential equation in time for each fixed spatial frequency a.

Solving this ODE gives:

2

i(a,t) = a(a,0)e ™"
Substituting the expression for 4(a,0) that we computed above:

u(a,t) = e~ (a=N)?/2p—ia%t
The solution u is obtained by inverting the Fourier transform:

(a—X) /2 —ia’t zamda

u(z,t) e da =

=g e

Using the linear change of variables a — z(a),

N
— V¥ 2ia - 2

(&

142t
(so that da = \/%), the above integral becomes
A2
e 7 / 2 e w2 10 dz
U(ZE, t) — e20+2m) T T2 2042 27
2m J, V142

—2itA2 + AT z2
6 T 2(1+2dt) T 1+2it 2(142it)

\/27r 1—}—2@1& ~

1,2
e 2% dz,
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(b)

where the curve v is the straight line

A +ix
a) = V1 + 2ita — 22 4eR
v(a) VI 2

z2
Using Cauchy’s theorem to shift the integral from v to R (using the fact that e~ = decays
22
as Re(z) — £00), together with the fact that [, e~z dz = /27, we finally obtain:

2
—itA2ida— s
e 2(1+2it)

V142t

We want to show that the L?-norm of the solution is conserved over time:

u(z,t) =

d o

i) lu(z,t)|? do = 0.

(this is the reason why |u(z,t)|? can be physically interpreted as a probability density).
Since

We compute:

2 —
Olu(z, t)]*  Ou_ +u8_u — 9Re (%u) ‘

o ot ot
(since, Re(z) = (2 + 2), so for any two complex numbers a,b: 2Re(a-b) =a-b+a-b).

Now, we use the Schrédinger equation to substitute for O,u:

ou [ 0*u
5 = ! (—— + V(x)u) .

Substituting this into the previous expression for d|u|?, we get:
Olul? ( O*u _
W =2Re | —1 —@ +Vu|ul.

We now pull out the factor of —i, and recall that Re(—iz) = Im(z), so:

2 2
ANl o (ﬂu - va?) .

ot 0x?

Note that V(x)|ul* € R (since V(z) € R), so its imaginary part vanishes. Thus:



EPFL- Spring 2025 G. Moschidis

Series 14

MATH 207(0)—Analysis 1V 27 May 2025

(c)

Integrating over all x € R:

o0 oo 92
% . lu(x,t)*dz = 2Im /OO %(z,t} u(z,t) d.

We now integrate by parts. Since u(x,t) and J,u(x,t) decay to zero as © — Foo, the
boundary terms vanish. Hence:

2

* 9%u * Au Ou /°° ou
dz.

L i B el B P

This final integral is real, so its imaginary part is zero. Therefore:

d o0

i) lu(x,t)*dz = 0.

o0
/ |u(z,t)|*dx = constant in time

o0

This shows that the L?-norm of the wave function is conserved, which justifies interpreting
lu(z,t)|? as a probability density.

We now show that the total energy of the system is conserved in time. Define the energy

functional:
< [ |0u
Blul(t) = [ ( 4

(physically, the first term corresponds to kinetic energy and the second to potential en-
ergy). To check whether E[u|(t) is conserved, we differentiate with respect to time:

w2
dt ) .\ 0ot|ox

(note that we used the fact that V(z) is independent of ¢).
ou Ju

For convenience, let us use subscripts ug, u, etc for the partial derivatives ¢, 5. Using
Olul?

the fact that we computed 5= before (and similarly for the derivative of |u,|?):

+ V(x)|u(m,t)|2> dx

2 )
09
+ V(:U)at|u| ) dx

dE o
- = 2Re/ (Ugtly + V(2)wn) de.

(o9}
Integrating by parts in = for the term w,,u, (using the fact that u, goes to 0 as x — +00),
we get

dE o
= = 2Re/ (—uliyy + V(z)usu) de.

—00
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Next, recall from the Schrédinger equation:

ou ,
i —i(—Ugy + Vu).

Substitute u; into the expression for %:

oo

:2Re/ (—@'|uzz’2 + iV uty, + 1V ug,u — iV’u|2) dx.

oo

Notice that —i|u,,|*> and —iV|u|? are purely imaginary (so their real part is 0), so

E o
(ii_t = 2Re/ (1Vutlyy + 1V ugu) de.

Using the fact that 2Re(z) = z + Z, we have
2Re (1Vullyy + 1V ug) = (1VUlyy + 1V Ug,t) + (—iV g, — iV tgu) = 0,

dE
— =0
SO dt
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